Electrical and Electronic Measurements, Part 2 Lecture 7: Sensors and Transducers Fluid Pressure and Temperature Sensors

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra) Benha University

November 2016

Table of Contents

1 Fluid Pressure Sensors.

Temperature Sensors.

Basic Principle:

- Three types of pressure could be measured:
 - Absolute pressure: the pressure is measured relative to zero pressure.
 - Gauge pressure: the pressure is measured relative to the barometric pressure.
 - **Oifferential pressure**: The pressure difference is measured.

[1] Displacement-based Pressure Sensors:

- The basic principle to measure the fluid pressure is to measure the elastic deformation caused by the fluid on a flexible material.
- A **diaphragm** could be used as a pressure sensor, when there is a difference in pressure between the two sides, then the center of the diaphragm becomes displaced.
- To increase the sensitivity, **corrugations** could be made in the diaphragm.
- The sensor movement can be monitored by some form of **displacement** sensor, e.g. a strain gauge.

[1] Displacement-based Pressure Sensors:

- (a) **Capsules** are two or more corrugated diaphragms to give greater sensitivity.
- (b) A stack of capsules combine a **bellows** to give more sensitive.
- A bellows can be combined with an LVDT to give a pressure sensor with an electrical output.

[1] Displacement-based Pressure Sensors:

- A different form of deformation is obtained using a tube with in the form of a C-shaped tube, the C opens up to some extent when the pressure in the tube increases.
- A helical form of such a tube gives a greater sensitivity.

[2] Piezoelectric Pressure Sensors:

- Piezoelectric materials when stretched or compressed generate electric charges.
- The net charge q on a surface is proportional to the displacement x which is proportional to the applied force F:

q = kx = SF S: (sensitivity)

• The voltage produces across the capacitance *C*:

$$V = \frac{q}{C} = \frac{St}{\epsilon_0 \epsilon_r A} F = S_v t P$$

S_v: Voltage sensitivity factor. P: The pressure to be measured. Dr. Haitham El-Hussienv

Electrical and Electronic Measurements, Part 2 7 / 17

[3] Tactile Pressure Sensors:

- A tactile sensor is a particular form of pressure sensor. Such a sensor is used on the 'fingertips' of robotic 'hands' to determine when a 'hand' has come into contact with an object.
- It consists of **two layers of a piezoelectric films** separated by a soft film which transmits vibrations.
- The lower film has an alternating voltage applied to it and this results in mechanical oscillations of the film (Reverse Piezoelectric).
- The intermediate film transmits these vibrations to the upper film and an alternating voltage is produced across the upper film.
- When pressure is applied to the upper film its vibrations are affected and the output alternating voltage is changed.

Table of Contents

1 Fluid Pressure Sensors.

2 Temperature Sensors.

[1] Bimetallic strips:

- A bimetallic strip is used to convert a temperature change into mechanical displacement.
- It consists of two different metal strips with different coefficients of expansion bonded together.
- When the temperature changes, the composite strip bends into a curved strip, with the higher coefficient metal on the outside of the curve.
- This deformation may be used as a temperature controlled switch.
- The small magnet enables the sensor to change the temperature at which the switch close.

[2] Resistance Temperature Detectors (RTDs):

• The resistance of most metals changes with the change in the temperature as follows:

 $R_t = R_0(1 + \alpha t)$

- R_t : Resistance at temperature t. R_0 : Resistance at temperature $0^{\circ}C$
- α : Temperature coefficient.
- RTDs are highly stable and give reproducible responses over long periods of time.
- They tend to have response times of the order of 0.5 to 5 seconds or more.

[3] Thermistors:

- Thermistors are small pieces of material made from a mixture of semiconductor oxides.
- The thermistor material is formed into various forms of element, such as beads, discs and rods.
- The resistance of conventional metal-oxide thermistors decreases in a very non-linear manner with an increase in temperature.

$$R_t = Ke\frac{\beta}{t}$$

- They can be very small and responding very rapidly to changes in temperature.
- Their main disadvantage is their non-linearity.

[4] Thermodiodes and transistors:

• When the temperature of doped semiconductors changes, the mobility of their charge carriers changes giving a current *I* through the junction that is a function of the temperature *T* and the applied voltage *V*:

$$I = I_0(e^{eV/kT} - 1)$$

By taking logarithms we can write the equation in terms of the voltage as:

$$V = \frac{kT}{e} ln(\frac{l}{l_0} + 1)$$

if *I* is a constant current source, the voltage across the thermo-diode is proportional to the temperature.

[5] Thermocouples:

- If two different metals are joined together, a potential difference occurs across the junction depending on the metal and the temperature.
- Usually, a thermocouple involves **two metal junctions** one as a reference junction.
- If the reference junction holds at 0°C, there is an e.m.f. E as follows:

 $E = at + bt^2$ a,b are constants

• Commonly used thermocouples are shown in the table with different given reference letters

Ref.	Materials	Range (°C)	(µV/°C)
в	Platinum 30%	0 to 1800	3
	rhodium/platinum 6% rhodium		
E	Chromel/constantan	-200 to 1000	63
J	Iron/constantan	-200 to 900	53
K	Chromel/alumel	-200 to 1300	41
N	Nirosil/nisil	-200 to 1300	28
R	Platinum/platinum 13% rhodium	0 to 1400	6
S	Platinum/platinum 10% rhodium	0 to 1400	6
Т	Copper/constantan	-200 to 400	43

[5] Thermocouples:

- A thermocouple can be used with the reference junction at a temperature other than $0^{\circ}C$.
- A correction has to be applied to the standard tables to find the new e.m.f. value when using the new reference temperature:

 $E_{t,0} = E_{t,I} + E_{I,0}$ intermediate temperature law

 $E_{t,0}$ e.m.f at temperature t when the cold junction is at 0. $E_{t,I}$ e.m.f at temperature t when the cold junction is at $I^{\circ}C$. $E_{l,0}$ e.m.f at temperature I when the cold junction is at 0. Example: This reference table is given when the cold junction is at $0^{\circ}C$.

Temp. (°C)	0	20	200
E.M.F. (mV)	0	1.192	13.419

If the cold junction is at $20^{\circ}C$ what will be the e.m.f. at $200^{\circ}C$?

$$E_{200,0} = \boxed{E_{200,20}} + E_{20,0}$$
$$\boxed{E_{200,20}} = 12.227 mV$$

[5] Thermocouples:

- It is often not convenient to maintain the reference junction of a thermocouple at 0.
- A compensation circuit can, however, be used to provide an e.m.f. which is added to the junction e.m.f in such a way that simulate the cold junction.

End of Lecture

Best Wishes